
Definitions
Geometry qualifying course

MSU, Fall 2016

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the fall semester differential
geometry qualifying course at Michigan State University, in fall of 2016. It serves as a
companion document to the “Theorems” review sheet for the same class. The main textbook
for the course was Introduction to Smooth Manifolds by John Lee, and this document closely
follows the order of material in that book.
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0 Appendix A: Topology

Definition 0.1. A topological space X is Hausdorff if for every x, y ∈ X there exist open
sets U, V withx ∈ U, y ∈ V and U ∩ V = ∅.

Definition 0.2. A basis for a topological space X is a collection B such that any open set
U ⊂ X can be written as a union U =

⋃
α∈ABα where each Bα ∈ B.

Definition 0.3. A topological space is second-countable if it has a countable basis.

Definition 0.4. Let X be a topological space. A subset A ⊂ X is precompact if the closure
of A is compact.

Definition 0.5. A topological space X is locally compact if every point x is contained in
an open set U such that U is a subset of a compact set.

Definition 0.6. Let X be a topological space. A collection of subset {Aα} is locally finite
if every point in X has an (open) neighborhood U such that U ∩ Aα 6= ∅ for only finitely
many α.

Definition 0.7. Let X be a topological space and U be an open cover. A refinement of U
is another cover V so that each V ∈ V is contained in some U ∈ U .

Definition 0.8. A topological space X is paracompact if every open cover admits an open,
locally finite refinement.

1 Chapter 1 - Defining manifolds

Definition 1.1. A topological n-manifold is a topological space that is Hausdorff, second-
countable, and locally Euclidean of dimension n.

Definition 1.2. For a topological n-manifold M , a coordinate chart is a pair (U, φ) where
U is an open subset of M and φ : U → Û is a homeomorphism (where Û ⊂ Rn).

Definition 1.3. Let M be a topological n-manifold and let (U, φ) be a coordinate chart. Then
φ(p) = (x1(p), x2(p), . . . , xn(p)) for some functions xi : U → Rn. The functions xi are called
local coordinates or coordinate functions on U .

Definition 1.4. Let M1, . . . ,Mk be topological manifolds of dimension n1, . . . , nk respec-
tively. The product manifold is the cartesian product

∏
iMi endowed with the product

topology.

Definition 1.5. Let U ⊂ Rn and V ⊂ Rm be open. A function F : U → V can be written
as

F (x1, . . . , xn) = (F 1(x1, . . . , xn), . . . , Fm(x1, . . . , xn))

F is smooth if each F i has continuous partial derivatives of all orders.

Definition 1.6. Let U, V be open subsets of Euclidean spaces. A map F : U → V is a
diffeomorphism if F is bijective, smooth, and has a smooth inverse.
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Definition 1.7. Let M be a topological n-manifold. Two charts (U, φ), (V, ψ) are smoothly
compatible if the map ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism.

Definition 1.8. Let M be a topological n-manifold. An atlas for M is a collection of smooth
charts whose domains cover M .

Definition 1.9. Let M be a topological n-manifold. A smooth atlas for M is an atlas
consisting of smoothly compatible charts.

Definition 1.10. Let M be a topological n-manifold. A maximal smooth atlas for M is
a smooth atlas that is not contained in any other smooth atlas for M .

Definition 1.11. Let M be a topological n-manifold. A smooth structure for M is a
maximal smooth atlas for M .

Definition 1.12. A smooth manifold is a topological n-manifold with a smooth structure.

Definition 1.13. Let M be a smooth manifold. Then any chart (U, φ) contained in the given
maximal smooth atlas is called a smooth chart or a smooth coordinate chart.

Definition 1.14. A smooth coordinate ball is a smooth coordinate chart whose domain
is homeomorphic to a ball in Euclidean space.

Definition 1.15. Let M be a smooth manifold. A regular coordinate ball is a smooth
coordinate ball whose closure is contained in another smooth coordinate ball in a nice way.
More precisely, (B, φ) is a regular coordinate ball if there is another smooth chart (B′, φ′)
such that B ⊂ B′ and

φ′(B) = B(0, r)

φ′(B) = B(0, r)

φ′(B′) = B(0, r′)

for some 0 < r < r′.

Definition 1.16. Let V be an n-dimensional real vector space, endowed with the topology
so that scalar multiplication and vector addition are continuous. Choose an ordered basis
{E1, . . . En}. Then define E : Rn → V by

E(x1, . . . , xn) =
n∑
i=1

xiEi

Then E is a homeomorphism, so (V,E−1) is a chart. This single chart induces a maximal
atlas on V . (One can check that this chart is smoothly compatible by an analogous chart
induced by another choice of basis for V .) This is called the standard smooth structure
on the vector space V.

Definition 1.17. Let M be a smooth manifold. A open submanifold of M is any open
subset U . The smooth charts for U are of the form (V, ψ) where V ⊂ U .

Definition 1.18. A closed manifold is a manifold that is compact and has empty bound-
ary.

Definition 1.19. Let U ⊂ Rn and φ : U → R be a smooth function. The set φ−1(c) is a
level set of φ.
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2 Chapter 2 - Smooth functions

Definition 2.1. Let M be a smooth n-manifold, and f : M → Rk. f is a smooth function
if for every p ∈M , there exists a smooth chart (U, φ) where p ∈ U and f ◦ φ−1 : φ(U)→ Rk

is smooth (has continuous partial derivatives of all orders).

Definition 2.2. Let M be a manifold. Then we define C∞(M) = {f : M → R} where f
is smooth.

Definition 2.3. Let M be a smooth manifold. We define addition and multiplication on
C∞(M) pointwise, as well as scalar multiplication from R. For f, g ∈ C∞(M) and a ∈ R,

(f + g)(x) = f(x) + g(x) (fg)(x) = f(x)g(x) (af)(x) = a(f(x))

This gives C∞(M) the structure of a commutative and associative algebra over R.

Definition 2.4. Let M be a smooth manifold, f : M → Rk, and let (U, φ) be a chart for M .

The coordinate representation of f is the map f̂ : φ(U)→ Rk defined by f̂ = f ◦ φ−1.

Definition 2.5. Let M,N be smooth manifolds. A map F : M → N is smooth if for every
p ∈ M there exist smooth charts (U, φ), (V, ψ) with p ∈ U ⊂ M and F (U) ⊂ V ⊂ N such
that ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V ) is smooth (in the calculus sense).

Definition 2.6. Let F : M → N be a smooth map. For any charts (U, φ) for M and (V, ψ)

for N , the coordinate representation of F is the map F̂ = ψ ◦ F ◦ φ−1.

Definition 2.7. A diffeomorphism is a smooth map F : M → N that is a bijection
and has a smooth inverse. If there is a diffeomorphism between two manifolds, they are
diffeomorphic.

Definition 2.8. Let f : M → Rk. The support of f is the closure of {p ∈M : f(p) 6= 0}.

Definition 2.9. Let f : M → Rk. If supp f ⊂ U for some U ⊂ M , then f is supported
in U.

Definition 2.10. Let f : M → Rk. If supp f is compact, then f is compactly supported.

Definition 2.11. Let M be a topological space and let {Uα}α∈A be a collection of subsets.
The collection {Uα} is locally finite if for each p ∈M , there is a neighborhood V such that
V ∩ Uα 6= ∅ for only finitely many Uα.

Definition 2.12. Let M be a topological space and let X = {Xα}α∈A be an open cover of
M . A partition of unity subordinate to X is a family {ψα}α∈A of continuous functions
ψα : M → R such that

1. 0 ≤ ψα(p) ≤ 1 for all α ∈ A, p ∈M .

2. suppψα ⊂ Xα for all α ∈ A.

3. The collection {suppψα}α∈A is locally finite.
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4.
∑

α∈A ψα(p) = 1 for all p ∈M .

(Note that because the supports of ψα is a locally finite collection, the sum over α ∈ A has
only finitely many nonzero terms, so there are no issues of convergence.)

Definition 2.13. Let M be a topological space. A smooth partition of unity for M is a
partition of unity in which each of the functions ψα is smooth.

Definition 2.14. Let M be a topological space, A ⊂ M be closed, and U ⊂ M closed, with
A ⊂ U . A bump function for A supported in U is a continuous function ψ : M → R
with 0 ≤ ψ ≤ 1 on M , ψ = 1 on A, and suppψ ⊂ U .

Definition 2.15. Let M,N be smooth manifolds and A ⊂ M . We say that F : A → N is
smooth on A if for every p ∈ A, there is an open subset W with p ∈ W ⊂M and a smooth
map F̃ : W → N such that F̃ |W∩A(x) = F (x) for x ∈ W ∩ A.

Definition 2.16. Let M be a topological space. A exhaustion function for M is a
continuous function f : M → R such that f−1((−∞, a]) is compact for every a ∈ R.

3 Chapter 3 - Tangent bundle

Recall that a linear map v : C∞(M) → R has the following properties: For f, g ∈ C∞(M)
and a ∈ R,

v(f + g) = vf + vg v(af) = av(f)

Definition 3.1. Let M be a smooth manifold and p ∈ M . A derivation at p is a linear
map v : C∞(M)→ R that satisfies

v(fg) = f(p) · vg + g(p) · vf

for all f, g ∈ C∞(M).

Definition 3.2. Let M be a manifold and p ∈M . The set of derivations at p is the tangent
space to M at p, and it is denoted TpM . An element v ∈ TpM is a tangent vector at
p.

Definition 3.3. Let M,N be smooth manifolds and F : M → N be smooth. The pullback
of F is the map F ∗ : C∞(N)→ C∞(M) defined by F ∗(f) = f ◦ F .

Definition 3.4. Let M,N be smooth manifolds and F : M → N be a smooth map and let
p ∈ M . The differential of F at p, also called the pushforward of F at p is a map
dFp : TpM → TF (p)N . It maps a derivation at p to a derivation at F (p), so for v ∈ TpM ,
dFp(v) acts on functions f ∈ C∞(N).

dFp : TpM → TF (p)N

dFp(v)(f) = v(f ◦ F )
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Another notation that is used for the differential of F at p is

F∗ : TpM → TF (p)N

F∗(v)(f) = v(f ◦ F ) = vF ∗(f)

As a helpful reminder, note that

f ∈ C∞(N) f : N → R
v ∈ TpM v : C∞(M)→ R
dFp(v) ∈ TF (p)N dFp(v) : C∞(N)→ R

Definition 3.5. Let M be a smooth n-manifold, p ∈ M , and (U, φ) a smooth chart with

p ∈ U . Let Û = φ(U). Since φ : U → Û is a diffeomorphism, φ∗ : TpU → Tφ(p)Û is an

isomorphism, so we have a basis
{

∂
∂xi

∣∣
φ(p)

}n
i=1

for Tφ(p)Û . Then we define the coordinate

vectors at p (associated with the coordinates (U, φ)) to be

∂

∂xi

∣∣∣∣
p

= (φ∗)
−1

(
∂

∂xi

∣∣∣∣
φ(p)

)
Then we see that

∂

∂xi

∣∣∣∣
p

f = (φ∗)
−1

(
∂

∂xi

∣∣∣∣
p̂

)
f =

(
∂

∂xi

∣∣∣∣
p̂

)
(φ−1)∗f =

(
∂

∂xi

∣∣∣∣
p̂

)
(f ◦ φ−1) =

∂f̂

∂xi
(p̂)

where f̂ = f ◦ φ−1 and p̂ = φ(p). The set{
∂

∂xi

∣∣∣∣
p

}n

i=1

is a coordinate basis for TpM .

Definition 3.6. Let M be a smooth manifold. The tangent bundle of M is the disjoint
union of all tangent spaces,

TM =
⊔
p∈M

TpM

Definition 3.7. Let M be a smooth manifold and TM the tangent bundle. The natural
projection is the map π : TM →M defined by (p, v) 7→ p.

Definition 3.8. Let M be a smooth manifold and TM the tangent bundle. Let π : TM →M
be the natural projection. For a chart (U, φ) for M , let φ(p) = (x1(p), . . . xn(p)), and define

φ̃ : π−1(U)→ R2n by

φ̃

(
vi

∂

∂xi

∣∣∣∣
p

)
= (x1(p), . . . , xn(p), v1, . . . vn)

Then the collection of charts of the form (π−1(U), φ̃) are smooth charts for TM . These are
called the natural coordinates on TM.
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Definition 3.9. Let M,N be smooth manifolds and let F : M → N be smooth. The global
differential is a map dF : TM → TN . For p ∈ M, v ∈ TpM , we have (p, v) ∈ TM , and
dF is the map

(p, v) 7→ (F (p), dFp(v))

Notice that dFp(v) ∈ TF (p)N , so (F (p), dFp(v)) ∈ TN .

Definition 3.10. Let M be a smooth manifold. A curve in M is a continuous map
γ : J →M where J ⊂ R is an interval.

Definition 3.11. Let M be a smooth manifold and let γ : J → M be a curve in M . For
t0 ∈ J , the velocity of γ at t0 is a particular vector in Tγ(t0)M . It is denoted γ′(t0), and
is given by

γ′(t0) =
dγ

dt

∣∣∣∣
t0

∈ Tγ(t0)M

If (U, xi) is a coordinate chart containing γ(t0), then

γ′(t0) =
dγi

dt
(t0)

∂

∂xi

∣∣∣∣
γ(t0)

4 Chapter 4 - Submersions and immersions

Definition 4.1. A map F : X → Y of topological spaces is proper if the preimage of any
compact set is compact.

Definition 4.2. Let F : M → N be a smooth map. For p ∈M , the rank of F at p is the
rank of the linear map dFp : TpM → TF (p)N .

Definition 4.3. Let F : M → N be a smooth map. F has constant rank if the rank of F
at p is the same for all p ∈M . If F has constant rank, we call the rank of F.

Definition 4.4. Let F : M → N be a smooth map. If the rank of F at p is min(dimM, dimN)
then F has full rank at p.

Definition 4.5. Let F : M → N be a smooth map. F has full rank if F has rull rank at
every p ∈M .

Definition 4.6. A smooth submersion is a smooth map F : M → N with rankF =
dimN (this means that dFp = F∗ is surjective for all p ∈M).

Definition 4.7. A smooth immersion is a smooth map F : M → N with rankF = dimM
(this means that dFp = F∗ is injective for all p ∈M).

Definition 4.8. Let F : M → N be a smooth map. F is a local diffeomorphism if
for every p ∈ M , there exists a neighborhood U of p such that F (U) is open in N and
F |U : U → F (U) is a diffeomorphism.
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Definition 4.9. Let M,N be smooth manifolds. A smooth embedding of M into N is
a smooth immersion F : M → N that is also a homeomorphism onto its image. That is, a
smooth embedding is injective, continuous, and has a continuous inverse.

Definition 4.10. Let X, Y be topological spaces and F : X → Y a continuous map. F is a
topological embedding if F is injective and is a homeomorphism onto its image.

Definition 4.11. Let X, Y be topological spaces and F : X → Y be a continuous map. F is
a topological immersion if every x ∈ X has a neighborhood U such that F |U : U → Y is
a topological embedding.

Definition 4.12. Let M,N be smooth manifolds and let π : M → N be a continuous map.
A section of π is a continuous map σ : N →M such that π ◦ σ = IdN .

Definition 4.13. Let M,N be smooth manifolds and let π : M → N be a continuous map.
A local section of π is a continuous map σ : U →M defined on some open subset U ⊂ N
such that π ◦ σ = IdU .

Definition 4.14. Let X, Y be topological spaces and π : X → Y a continuous map. Then π
is a topological submersion if every x ∈ X is in the image of a local section of π.

5 Chapter 5 - Critical points of smooth functions

Definition 5.1 (repeated from Chapter 1 for convenience). Let M be a smooth manifold. A
open submanifold of M is any open subset U . The smooth charts for U are of the form
(V, ψ) where V ⊂ U .

Definition 5.2. Let M be a smooth manifold. An embedded submanifold is a subset
S ⊂ M that is a manifold in the subspace topology, endowed with a smooth structure with
respect to which the inclusion map S ↪→M is a smooth embedding. These may also be called
regular submanifolds. M is called the ambient manifold for S.

Definition 5.3. Let S be an embedded submanifold in M . Then the codimension of S in
M is dimM−dimS. If S has codimension 1, then S is called an embedded hypersurface.

Definition 5.4. If U is an open subset of Rn and k ∈ {0, . . . , n} a k-dimensional slice
of U is a subset of the form

S = {(x1, . . . , xk, xk+1, . . . , xn) ∈ U : xk+1 = ck+1, . . . , xn = cn}

for some real constants ck+1, . . . , cn. A k-dimensional slice of U is also simply called a k-
slice.

Definition 5.5. Let M be a smooth n-manifold and let (U, φ) be a smooth chart. If S ⊂ U
such that φ(S) is a k-slice of φ(U), then we say S is a k-slice of U .

Definition 5.6. Let M be a smooth n-manifold. A subset S ⊂M satisfies the local k-slice
condition if each point of S is contained in the domain of a smooth chart (U, φ) such that
S ∩ U is a k-slice of U .
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Definition 5.7. Let M,N be smooth manifolds. For p ∈ N , the subset M × {p} is a slice
of M ×N .

Definition 5.8. Let M,N be smooth manifolds with dimension m,n respectively. Let U ⊂M
be open and f : U → N be a smooth map. The graph of f is the set

Γ(f) = {(x, y) ∈M ×N : x ∈ U, y = f(x)}

Definition 5.9. Let M be a smooth manifold and S ⊂ M be an embedded submanifold. S
is a properly embedded submanifold if the inclusion S ↪→M is a proper map.

Definition 5.10 (repeated from chapter 1 for convenience). Let φ : M → N be a map and
c ∈ N . The set φ−1(c) is a level set of φ.

Definition 5.11. Let M,N be smooth manifolds and φ : M → N be a smooth map. A point
p ∈M is regular point of φ if dφp : TpM → Tφ(p)N is surjective.

Definition 5.12. Let M,N be smooth manifolds and φ : M → N be a smooth map. A point
p ∈M is critical point of φ if it is not a regular point.

Definition 5.13. Let M,N be smooth manifolds and φ : M → N be a smooth map. A point
c ∈ N is a regular value of φ if every point in the level set φ−1(c) is a regular point.

Definition 5.14. Let M,N be smooth manifolds and φ : M → N be a smooth map. A point
c ∈ N is a critical value of φ if there is some point in the level set φ−1(c) is a critical
point.

Definition 5.15. Let M,N be smooth manifolds and φ : M → N be a smooth map. A level
set φ−1(c) is a regular level set if c is a regular value of φ.

Definition 5.16. Let M be a smooth manifold with or without boundary. An immersed
submanifold of M is a subset S ⊂M endowed with a topology (not necessarily the subspace
topology) such that S is a topological manifold, and S has a smooth structure such that the
inclusion map S ↪→M is a smooth immersion. The codimension of S is dimM − dimS.

Definition 5.17. The term smooth submanifold refers to an immersed submanifold.

Definition 5.18. Let M be a smooth manifold and S an immersed submanifold. S is weakly
embedded in M if every smooth map F : N → M whose image lies in S is smooth as a
map from N to S. These may also be called initial submanifolds.

Definition 5.19. Let M be a smooth manifold with boundary. For p ∈ ∂M , a vector
v ∈ TpM \ Tp∂M is inward pointing if for some ε > 0 there exists a smooth curve
γ : [0, ε)→M such that γ(0) = p and γ′(0) = v. The vector v is outward pointing if there
is a curve γ : (−ε, 0] with γ(0) = p and γ′(0) = v.

6 Chapter 6 - Sard’s theoerm

Definition 6.1. Let M be a smooth n-manifold with or without boundary. A subset A ⊂M
has measure zero in M if for every smooth chart (U, φ) the subset φ(A ∩ U) has measure
zero in Rn.
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7 Chapter 7 - Lie groups

Definition 7.1. A Lie group is a smooth manifold without boundary that is also a group,
such that the multiplication m : G×G→ G and inversion i : G→ G given by m(g, h) = gh
and i(g) = g−1 are both smooth maps.

Definition 7.2. Let G be Lie group. We define the left translation and right translation
maps Lg, Rg : G→ G by

Lg(h) = gh Rg(h) = hg

Note that Lg is the composition of h 7→ (g, h) and (g, h) 7→ gh so Lg is smooth. Since
Lg ◦ Lg−1 = IdG, Lg is a diffeomorphism.

Definition 7.3. A Lie group homomorphism is a smooth map F : G→ H that is also
a group homomorphism.

Definition 7.4. A Lie group isomorphism is a diffeomorphism F : G→ H that is also
a group homomorphism.

Definition 7.5. Let G be Lie group. A Lie subgroup is a subgroup that is also an immersed
submanifold.

Definition 7.6. Let G be a group and S a subset. The subgroup generated by S is the set
of all elements that can be expressed as finite products of elements of S and their inverses.

Definition 7.7. Let G be a Lie group and M,N be smooth manifolds with left G-actions. A
map F : M → N is equivariant with respect to these actions if

F (g · p) = g · F (p)

for g ∈ G and p ∈M . That is, the following diagram commutes:

M
F−−−→ N

θg

y φg

y
M

F−−−→ N

where θg : M →M is the map p 7→ g · p and φg : N → N is the map x 7→ g · x.

Definition 7.8. The orthogonal group is the subgroup of GL(n,R) such that ATA = In.

8 Chapter 8 - Vector fields

Definition 8.1. Let M be a smooth manifold. A vector field on M is a section of π :
TM →M . That is, a vector field is a continuous map X : M → TM denoted X 7→ Xp such
that Xp ∈ TpM for every p ∈M .

Definition 8.2. A smooth vector field is a vector field that is smooth as a map from TM
to M .
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Definition 8.3. A rough vector field is a map X : M → TM such that Xp ∈ TpM for
every p. (Not necessarily a smooth or continuous map.)

Definition 8.4. If (U, xi) is a smooth coordinate chart for M and X is a vector field on M ,
then the component functions of X are the functions X i : U → R such that

Xp =
∑
i

X i(p)

(
∂

∂xi

∣∣∣∣
p

)
= X i(p)

∂

∂xi

∣∣∣∣
p

Definition 8.5. Let M be a smooth manifold. We denote the set of all smooth vector fields
on M by X(M). We define addition in X(M) by

(X + Y )p = Xp + Yp

We define scalar multiplication from R by

(aX)p = a(Xp)

Then X(M) is a vector space over R with these operations. (Note that the sum of smooth
vector fields is smooth.)

Definition 8.6. We define an action C∞(M)× X(M)→ X(M) by (f,X) 7→ fX where

(fX)p = f(p)Xp

Note that if f and X are smooth then fX is smooth. This action makes X(M) a C∞(M)
module.

Definition 8.7. We define an action X(M)× C∞(M)→ C∞(M) by (X, f) 7→ Xf where

(Xf)(p) = Xpf

Because of this action, for each X ∈ X(M), we have a map C∞(M) → C∞(M) given by
f 7→ Xf . This map is a derivation of C∞(M). That is,

X(fg) = f(Xg) + g(Xf)

Definition 8.8. Let M be a smooth manifold with A ⊂M . An ordered k-tuple (X1, . . . , Xk)
of vector fields on A is linearly independent if (X1|p, . . . , Xk|p) is linearly independent for
each p ∈ A.

Definition 8.9. Let M be a smooth n-manifold. A local frame for M is a linearly
independent ordered n-tuple of vector fields defined on an open subset U . Then their values
at any p form a basis for TpM .

Definition 8.10. A global frame for M is a local frame defined on all of M .

Definition 8.11. A smooth manifold is parallelizable if it has a smooth global frame.
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Definition 8.12. Let F : M → N be a smooth map, X ∈ X(M) and Y ∈ X(N). X
and Y are F-related if for each p ∈ M , we have dFp(Xp) = YF (p). (In other notation,
F∗(Xp) = YF (p). In other words, the following diagram commutes.

M
X−−−→ TM

F

y F∗

y
N

Y−−−→ TN

Definition 8.13. If F : M → N is a diffeomorphism and X ∈ X(M), the pushforward of
X by F is the vector field F∗X defined by

(F∗X)q = dFF−1(q)(XF−1(q))

Definition 8.14. Let X, Y ∈ X(M). The Lie bracket of X and Y is the operator [X, Y ] :
C∞(M)→ C∞(M) given by

[X, Y ]f = XY f − Y Xf
Note that [X, Y ] ∈ X(M). Pointwise, we have

[X, Y ]pf = Xp(Y f)− Yp(Xf)

Definition 8.15. Let G be a Lie group. A vector field X on G is left-invariant if

(Lg)∗X = X

for all g, h ∈ G.

Definition 8.16. Let G be a Lie group. The Lie algebra of G, denoted Lie(G), is the
vector space of smooth left-invariant vector fields, with the usual bracket.

9 Chapter 9 - Flows

Definition 9.1. Let V be a vector field on M . An integral curve of V is a smooth curve
γ : J →M such that γ′(t) = Vγ(t) for t ∈ J .

Definition 9.2. Let M be a smooth manifold. A global flow on M is a map θ : R×M →M
such that

θ(t, θ(s, p)) = θ(t+ s, p) θ(0, p) = p

Given a global flow θ, we define a one-parameter family of maps θt : M → M defined by
θt(p) = θ(t, p). This family satisfies θt ◦ θs(p) = θt+s(p) and θ0 = IdM . Note that θt is a
diffeomorphism. We also have a family of maps θp(t) : R→M given by θp(t) = θ(t, p). The
image of θp is the orbit of p.

Definition 9.3. Let M be a smooth manifold and θ : R × M → M a global flow. The
infinitesimal generator of θ is the rough vector field V defined by

Vp =
d

dt
θp(t)

∣∣∣∣
t=0
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Definition 9.4. Let M be a smooth manifold. A flow domain is a subset D of R ×M
such that for each p ∈M , the set Dp = {t ∈ R : (t, p ∈ D} is an open interval containing 0.

Definition 9.5. Let M be a smooth manifold. A flow on M is a map θ : D →M where D
is a flow domain, and θ satisfies

θ(0, p) = p θ(t, θ(s, p)) = θ(s+ t, p)

for s ∈ Dp and t ∈ Dθ(s,p) such that s+ t ∈ Dp.

Definition 9.6. A maximal integral curve is an integral curve γ : J → M such that γ
cannot be (smoothly) extended to any interval larger than J .

Definition 9.7. A maximal flow on a manifod is a flow on M that cannot be (smoothly)
extended to any larger flow domain.

Definition 9.8. Let θ be a flow on M with flow domain D. We define the set

Mt = {p ∈M : (t, p) ∈ D}

Definition 9.9. A vector field is complete if it generates a global flow. That is, all of the
integral curves are defined for all t ∈ R.

Definition 9.10. Let V be a vector field. A singular point is a point p such that Vp = 0.
If Vp 6= 0, then p is a regular point.

Definition 9.11. Let M be a manifold and V,W ∈ X(M). V and W commute if VWf =
WV f for every f ∈ C∞(M). Equivalently, V,W commute if [V,W ] = 0.

Definition 9.12. Let M be a manifold and θ a flow on M . A vector field W is invariant
under the flow of θ if W is θt-related to itself for each t.

10 Chapter 10 - Vector bundles

Definition 10.1. Let F : M → N be a map. A fiber of F is the preimage of a single point,
F−1(p).

Definition 10.2. Let π : E →M be a smooth map. A local trivialization of E over U
is a diffeomorphism φ : π−1(U)→ U × Rk such that

πU ◦ φ = π

π−1(U) U × Rk

U

φ

π
πU

where πU : U × Rk → U is the projection. Also, for each q ∈ U , the restriction φ|Eq : Eq →
{q} ×Rk is a vector space isomorphism.

14



Definition 10.3. Let M be a smooth manifold. A vector bundle of rank k over M
is a smooth manifold E with a surjective smooth map π : E → M such that each fiber
Ep = π−1(p) is a k-dimensional (real) vector space, and for each p ∈ M , there is a chart U
and a local trivialization of E over U .

Definition 10.4. Let π : E →M be a vector bundle. A local section of E is a continuous
map σ : U → E such that π ◦ σ = idU , where U ⊂ M . A global section is a local section
where U = M .

Definition 10.5. Let π : E → M and π′ : E ′ → M ′ be smooth vector bundles. A bundle
homomorphism is a smooth map F : E → E ′ such that there exists a smooth map f :
M →M ′ such that FEp : Ep → E ′p is a linear map and the following diagram commutes.

E
F−−−→ E ′

π

y π′

y
M

f−−−→ M ′

F is a bundle isomorphism if it is bijective and its inverse is a bundle homomorphism.

Definition 10.6. If π : E → M and π′ : E ′ → M ′ are vector bundles over M , a bundle
homomorphism over M is a map F : E → E ′ such that FEp : Ep → E ′p is linear and
π′ ◦ F = π.

11 Chapter 11 - Differential 1-forms

Definition 11.1. Let V be a finite-dimensional real vector space. A covector on V is a
linear map ω : V → R.

Definition 11.2. Let V be a finite-dimensional real vector space. The space of all covectors
on V form a real vector space under pointwise addition and scalar multiplication of maps,

(ω + α)(v) = ω(v) + α(v) (aω)(v) = a(ω(v))

This vector space is called the dual space of V and is denoted V ∗.

Definition 11.3. Let M be a smooth manifold. The cotangent space at p is the dual of
the tangent space, that is, (TpM)∗. It is denoted T ∗pM . Elements of T ∗pM are maps from
TpM → R and are called covectors at p.

Definition 11.4. The cotangent bundle of a manifold M is the disjoint union

T ∗M =
⊔
p∈M

T ∗pM

It is a vector bundle over M , of rank equal to dimM .
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Definition 11.5. A section of the cotangent bundle is called a covector field or a differ-
ential 1-form or a 1-form. More concretely, a 1-form is a map ω : M → T ∗M such that
ωp ∈ T ∗pM for every p (so ωp : TpM → R). If (U, xi) are local coordinates on M , a 1-form
ω can be written as ω = ωidx

i for some smooth functions ωi : U → R.

Definition 11.6. Let f ∈ C∞(M). The differential of f is a 1-form denoted by df . That
is, for p ∈M , dfp is a map from TpM to R, given by

dfp(v) = vf

Recall that v ∈ TpM means that v is a linear map v : C∞(M)→ R that is a derivation at p.

Definition 11.7. Let f : V → W be a linear map between vector spaces. The dual map,
denoted f ∗, is the map f ∗ : W ∗ → V ∗ defined by w 7→ (v 7→ w(f(v))). That is, (f ∗(w))(v) =
w(f(v)).

Definition 11.8. Let F : M → N be a smooth map and let p ∈M . The pullback of F at
p is the dual map of the differential dFp : TpM → TF (p)N . That is,

dF ∗p (w)(v) = w(dFp(v))

Definition 11.9. Let F : M → N be a smooth map and ω be a 1-form on N . The pullback
of ω by F is the 1-form F ∗ω, which is defined by

(F ∗ω)p = dF ∗p (ωF (p))

That is, F ∗ω is a map M → T ∗M , satisfing the above. Thus (F ∗ω)p is a map TpM → R,
given by

(F ∗ω)p(v) = dF ∗p (ωF (p)(v) = ωF (p)dFp(v)

12 Chapter 12 - Differential k-forms

Definition 12.1. Let V1, . . . , Vk,W be vector spaces. The space L(V1, . . . , Vk;W ) is the
space of multilinear functions from V1 × . . .× Vk to W .

Definition 12.2. Let V1, . . . , Vk,W1, . . . ,Wl be real vector spaces, and let F ∈ L(V1, . . . , Vk;R)
and G ∈ L(W1, . . . ,Wl;R). Then the tensor product of F and G is the map

F ⊗G : V1 × . . .× Vk ×W1 × . . .×Wl → R

defined by
F ⊗G(v1, . . . , vk, w1, . . . , wl) = F (v1, . . . , vk)G(w1, . . . , wl)

In particular, if ω, η ∈ V ∗, then

ω ⊗ η(v1, v2) = ω(v1)η(v2)

Note that the tensor product is associative.
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Definition 12.3. Let V be a finite-dimensional real vector space. A k-tensor on V is a
multilinear function from a k-fold product of V to R, that is, α : V × . . . × V → R. The
rank of α is k.

Definition 12.4. Let V be a vector space. The space of multilinear functions α :
∏k

i=1 V
∗ →

R is called T k(V ).

Definition 12.5. A k-tensor is symmetric if it remains unchanged by interchanging pairs
of arguments.

Definition 12.6. A k-tensor is alternating if it changes sign when two arguments are
interchanged.

Definition 12.7. An alternating k-tensor is a exterior form of k-covector.

Definition 12.8. A k-tensor field or k-form on a manifold M is a map that assigns to
each p ∈ M an alternating k-linear function on TpM . That is, if ω is a k-form, then ωp is
an alternating k-tensor on TpM .

Definition 12.9. Let M be a smooth manifold. We define T (M) to be the space of covariant
k-tensor fields on M .

13 Chapter 14 - Exterior derivative

Definition 13.1. Let k ∈ N. A multi-index of length k is an ordered k-tuple I =
(i1, . . . , ik) where i1, . . . , ik ∈ N.

Definition 13.2. Let I be a multi-index of length k, and let σ ∈ Sk. Then we define
Iσ = (iσ(1), . . . , iσ(k)). Note that Iστ = (Iσ)τ .

Definition 13.3. Let V be an n-dimensional vector space and (ε1, . . . , εn) a basis for V ∗.
Let I = (i1, . . . , ik). We define a covariant k-tensor εI by

εI(v1, . . . , vk) = det

ε
i1(v1) . . . εi1(vk)

...
. . .

...
εik(v1) . . . εik(vk)


εI is a elementary alternating tensor or elementary k-covector.

Definition 13.4. Let I, J be multi-indices of length k. We define a generalized Kronecker
delta function δIJ by

δIJ =

{
sgnσ if neither I nor J has a repeated index and J = Iσ for some permutation σ

0 otherwise

Definition 13.5. A multi-index (i1, . . . , ik) is increasing if i1 < . . . < ik.
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Definition 13.6. A summation over increasing multi-indices is denoted by a prime ′ symbol,
as in

∑′
I .

Definition 13.7. The alternation operator is a map Alt : T k(V ∗)→ Λk(V ∗) defined by

(Altα)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(sgnσ)α(vσ(1), . . . , vσ(k))

Definition 13.8. Let V be a finite-dimensional vector space. Let ω ∈ Λk(V ) and η ∈ Λl(V )
we define the wedge product by

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η)

Definition 13.9. Let I = (i1, . . . , ik) and J = (j1, . . . , jl) be multi-indices of length k and l
respectively. Then we define

IJ = (i1, . . . , ik, j1, . . . , jl)

Definition 13.10. Let V be an n-dimensional vector space. Define

Λ(V ∗) =
n⊕
k=0

Λk(V ∗)

This is called the exterior algebra of V .

Definition 13.11. Let V be a finite-dimensional vector space. For v ∈ V , we define iv :
Λk(V ∗)→ Λk−1(V ∗) by

ivω(w1, . . . , wk−1) = ω(v, w1, . . . , wk−1)

We have the alternate notation ivω = v ⌟ ω. This gives an operation ⌟ : V × Λk(V ∗) →
Λk−1(V ∗), which is called interior multiplication.

Definition 13.12. Let M be a smooth manifold, and let X ∈ X(M) and ω ∈ Ωk(M). Then
we define X ⌟ ω ∈ Ωk−1(M) (alternately iXω) by

(X ⌟ ω)p = Xp ⌟ ωp

Definition 13.13. Let I = (i1, . . . , ik). We define

dxI = dxi1 ∧ . . . ∧ dxik

Definition 13.14. Let M be a smooth manifold. We define

ΛkT ∗M =
⊔
p∈M

Λk(T ∗pM)

Sections of ΛkT ∗M are called k-forms. That is, a k-form is a tensor field whose value at
each point is an alternating tensor. In a smooth chart (U, xi), a k-form ω can be written as

ω =
′∑
I

ωIdx
I
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Definition 13.15. The space of smooth k-forms is denoted Ωk(M). We then define

Ω∗(M) =
N⊕
k=1

Ωk(M)

With the wedge product, Ω∗(M) is an associative, annticommtative, graded algebra.

Definition 13.16. Let M be a smooth manifold. The exterior derivative is the unique
operator d : Ωk(M)→ Ωk+1(M) such that d is linear over R, d2 = 0, and

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη
for ω ∈ Ωk(M) and η ∈ Ωl(M), and for f ∈ C∞(M) = Ω0(M) we have df(X) = Xf . In a
smooth chart (U, xi) we have

d

( ′∑
J

ωJdx
J

)
=

′∑
J

dωJ ∧ dxI

(summing over increasing multi-indices J .)

Definition 13.17. A differential form ω is closed if dω = 0.

Definition 13.18. A differential form ω is exact if ω = dη for some other differential form
η.

14 Chapter 15 - Orientation

Definition 14.1. Let V be an n-dimensional real vector space. We define an equivalence
relation on the ordered bases of V by defining two bases to be equivalent if the transition
matrix between them has positive determinant. An orientation on V is a choice of one of
these two equivalence classes. Any basis in the chosen equivalence class is called positively
oriented, and a basis in the other class is negatively oriented.

Definition 14.2. A pointwise orientation on a manifold M is a choice of orientation
for each tangent space TpM .

Definition 14.3. Let M be a smooth manifold and U an open subset. An oriented local
frame on U is a local frame (E1, . . . , En) such that at each p ∈ U the basis (E1|p, . . . , En|p)
for TpM is postively oriented.

Definition 14.4. A pointwise orientation on a manifold M is continuous if every p ∈M
is contained in some oriented local frame.

Definition 14.5. An orientation for a manifold M is a continuous pointwise orientation.

Definition 14.6. A manifold is orientable if it has an orientation.

Definition 14.7. A smooth atlas for a manifold is consistenly oriented if the transition
map between any two chart functions has positive Jacobian determinant everywhere on the
intersection.

Definition 14.8. Let F : M → N be a local diffeomorphism of nonzero dimensional mani-
folds. F is orientation preserving if for each p ∈M the isomorphism dFp maps positively
oriented bases of TpM to positively oriented bases of TF (p)N .
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15 Chapter 16 - Integration on manifolds

Definition 15.1. A domain of integration in Rn is a bounded subset whose boundary
has measure zero.

Definition 15.2. Let D ⊂ Rn be a domain of integration and let ω = fdx1∧ . . .∧ dxn be an
n-form on D, where f : D → R is continuous. The integral of ω over D is defined to be∫

D

ω =

∫
D

ω dx1 ∧ . . . ∧ dxn =

∫
D

f dx1 . . . dxn

where the integral on the right is a Lebesgue integral.

Definition 15.3. Let M be an oriented smooth n-manifold and let ω be an n-form on M .
If ω is compactly supported in the domain of a positively oriented smooth chart (U, φ), then
we define ∫

M

ω =

∫
φ(U)

(φ−1)∗ω

Note that one can show that the integral does not depend on the choice of U .

Definition 15.4. Let M be an oriented smooth n-manifold, and ω a compactly supported
n-form on M . Let {Ui} be a finite open cover of suppω by positively oriented charts, and
{ψi} be a partition of unity subordinate to {Ui}. Then we define the integral of ω over
M to be ∫

M

ω =
∑
i

∫
M

ψiω

where we compute each integral
∫
M
ψiω using the previous definition. Note that one can show

that the integral does not depend on the choice of open cover or the choice of partition of
unity.

16 Chapter 17 - de Rham cohomology

Definition 16.1. Let M be a smooth manifold and n a non-negative integer. The map
d : Ωn(M)→ Ωn+1(M) is linear, so its kernel and image are linear subspaces. We define

Zn(M) = ker
(
d : Ωn(M)→ Ωn+1(M)

)
= {closed n-forms}

Bn(M) = im
(
d : Ωn−1(M)→ Ωn(M)

)
= {exact n-forms}

Definition 16.2. Since every exact form is closed, Bn(M) ⊂ Zn(M). Thus we can define
the nth de Rham cohomology group to be the quotient space

Hn(M) =
Zn(M)

Bn(M)

It’s pretty dumb that it is called a group, because it is actually a vector space. A vector space
is a group, but still. Oh well.
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Definition 16.3. Let ω be an n-form on a manifold M . Let [ω] be the equivalence class of
ω in Hn(M). If [ω] = [ω′], then ω and ω′ are cohomologous. That is, ω − ω′ is exact.

Definition 16.4. A topological space is contractible if the identity map is homotopic to a
constant map.
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